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Abstract

This paper presents a grid and flow adaptive wall-function method for RANS turbulence modelling with emphasis on
aerodynamic flows. A near-wall grid adaptation technique ensures a locally appropriate resolution depending on both the
near-wall flow physics to be captured and the range of validity of the wall-function model. The near-wall RANS solutions
of the Spalart–Allmaras and SST k–x turbulence model are investigated near stagnation points and subsequent not yet
fully developed turbulent flow, and in regions of adverse pressure gradient before separation. These are compared with
the corresponding turbulence model specific universal wall-functions and suggestions for the design of wall-function meth-
ods for non-equilibrium flows are given. Regions of non-equilibrium flow are detected by a flow based sensor and near-wall
grid adaptation is then made possible due to the hybrid character of the wall-functions.
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1. Introduction

In order to ensure both accuracy and efficiency of a simulation of complex flows, a computational method
has to choose (i) an appropriate the level of complexity for physical/mathematical description and (ii) a
numerical resolution adapted to the flow structures to be resolved and to the flow physics to be modelled.
In the present paper, the two levels of flow description are hybrid universal wall functions and the full RANS
and turbulence model equations. The numerical near-wall resolution depends on the near-wall flow structures
to be resolved, on the range of validity of the wall-function model applied, and on the convergence accelera-
tion for the numerical method aspired. Near-wall grid adaptation is made possible due to the hybrid character
of the wall-function method.
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The aim of hybrid (or adaptive) wall-functions is to provide a boundary condition at solid walls that enables
flow solutions independent of the location of the first grid node above the wall, in particular concerning sur-
face coefficients like pressure, skin friction and heat transfer. Denote y+(1) the distance of the first off-wall
node in viscous length-scales. Low-Re boundary conditions impose no-slip at the wall and the RANS equations
are integrated down to the wall, e.g., for the k–x, Spalart–Allmaras and v2–f model, which requires a so-called
low-Reynolds grid with y+(1) � 1. High-Re boundary conditions are used in standard wall-function formula-
tions and prescribe the wall-shear stress and no-penetration at the wall. The RANS equations are solved only
down to the inner part of the logarithmic layer and matched with the logarithmic law of the wall at the first
grid node above the wall. High-Re boundary conditions require a so-called high-Reynolds grid with y+(1)
being located in the log-layer. Moreover, we introduce the term intermediate-Re grid to refer to the region
between viscous sublayer and log-layer, i.e., the buffer layer.

Wall functions are based on the fact that for incompressible flows the solution between the wall and the
outer edge of the logarithmic layer is universal at least in quasi-equilibrium boundary layers. As the term
‘‘law of the wall’’ was originally used for the universal log-layer solution, the terms ‘‘hybrid law of the wall’’
or ‘‘adaptive law of the wall’’ have been proposed to stress validity in the entire near-wall region. The debate
on whether the (hybrid) law of the wall does not vary in pressure gradients is still open (see [1,2] and references
therein). Regarding the goal of grid-independent wall-functions, however, it is the behaviour of RANS turbu-
lence models in flows with pressure gradients which is of major importance. In this paper very satisfying results
are obtained without explicitly taking into account the pressure gradient.

Computational fluid dynamics (CFD) has been reaching more and more maturity as a general predictive
tool in industry with ‘‘sensible’’ reliability. Despite the fast increase in available computing resources during
the last decades, the huge computing costs are still a major limiting factor in the ‘‘appropriate’’ usage (in terms
of the numerical discretization error) of CFD tools in industry, in particular for unsteady calculations. An
additional need for improving performance arises as CFD-solvers are more and more used as part of optimi-
zation processes. This requires fast CFD-solutions for a large number of geometrical configurations without
loss in accuracy.

Low-Re grids require a large number of grid points in the near-wall region. E.g., for an airfoil flow at Rey-
nolds number 6 · 106, a low-Re grid requires around 35 nodes in wall normal direction to resolve the bound-
ary layer whereas a high-Re grid with y+(1) � 70 can do with 17. Moreover, numerical stiffness problems arise
on low-Re grids due to the large velocity gradients at the wall in conjunction with the small cell height, which
imply a very small pseudo time-step width and a large number of solver iterations. Moreover, the generation
of intermediate- and high-Re grids is much simpler. As a final remark on the areas of relevance, wall-functions
have been employed successfully as near-wall model for large-eddy simulation [3].

Albeit wall-functions are still strongly relevant in CFD and despite the more than 30 years enduring efforts
in this topic, most of the current approaches e.g. [4–7] seem to be suboptimal in the sense that their wall-func-
tions are not consistent with the turbulence model used for the global flow problem. This causes a strong
dependence of the numerical results on the location of the first off-wall grid node which leads to poor results
in flows with separation. To the author’s best knowledge the first paper which addressed and solved this issue
of consistency at least for flows close to equilibrium is the one by [8].

In the present paper the focus is on non-equilibrium flows with emphasis on aerodynamics with (i) stagna-
tion points and laminar/not fully developed turbulent flow, (ii) regions of significant pressure gradient param-
eter due to a strong (adverse) pressure gradient at a typically moderate Reynolds number and (iii) regions of
separation and reattachment. These flow situations are very important not only for flows around airfoils and
rotor blades, but even more for complex aircraft configurations with flaps, engines, etc. For such flows, this
paper proposes techniques for significant further improvement of the results in [9].

We restrict ourselves to flows in the subsonic and transonic regime. For high-speed flows at large Mach
numbers with very large temperature differences near walls, the physics involved do not seem to be yet com-
pletely understood. Based on the pioneering work [10], compressible wall-functions have been proposed
[11,12] but require further improvement.

The high-Re grid condition is violated in separated flows due to strong adverse pressure gradient when pres-
sure increases smoothly, e.g. for the flow over an airfoil in highlift configuration, the flow over a wind turbine
or in a diffusor. As the separation point is approached, y+(1) goes to zero as friction velocity is zero at the
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separation point. Hence a grid which is of high-Re type far upstream of separation violates more and more the
high-Re constraint as the separation point is approached. Then classical high-Re wall-functions inevitably fail.
For hybrid but inconsistent wall-functions [4,6,7] the grid-dependence causes a modelling error which accumu-
lates as the separation point is approached and results in poor predictions.

On high-Re grids, the results for turbulence model consistent wall-functions still deviate from the corre-
sponding low-Re solution in the flow situations (i)–(iii) mentioned above. As in these situations the wall-func-
tions are still very close to the low-Re solution for y+(1) ~ 10, we detect these regions using a flow-based
sensor and use a y+(1)-grid-adaptation method to ensure locally a low-Re or intermediate-Re grid, which is
allowed by the hybrid nature of consistent wall-functions.

This paper is organized as follows. In Section 2 the governing equations for compressible fluid flow and
RANS turbulence modelling are given. In Section 3 the wall-function method is formulated as a domain
decomposition with full overlap in the near-wall region. Universal wall-functions are proposed in a new closed
form and the underlying modelling assumptions are investigated, see Sections 4 and 5. The combination of
wall-functions and wall-normal grid adaptation with a flow-based sensor is presented in Section 6. In Section
7 the numerical method is described. Numerical results are given in Sections 8 and 9.

2. The governing equations of compressible turbulent fluid flow

2.1. RANS equations for compressible flows

We consider the steady-state Favre-averaged compressible Navier–Stokes equations in a bounded Lipschitz
domain X � Rd (d = 2,3). We use the eddy-viscosity assumption for the Reynolds-stress tensor and the gra-
dient-diffusion approximation for the turbulent heat-flux vector. The low-Re formulation reads as follows: We
seek velocity ~u : X! Rd , density q : X! R, pressure p : X! R, and temperature h : X! R s.t.
~r � ðq~uÞ ¼ 0 in X; ð1Þ
~r � ðq~u�~uÞ � ~r � ½2leTð~uÞ� þ ~rp ¼ 0 in X; ð2Þ

~r � q~u hþ 1

2
~u �~u

� �� �
� ~r � ½~uð2leTð~uÞÞ� � ~r � ðje

~rhÞ ¼ 0 in X ð3Þ
with the following boundary conditions on solid walls Cw
~u ¼~0 on Cw; ð4Þ
ðiÞ je

~rh �~n ¼ 0 on Cw or ðiiÞ h ¼ hw on Cw: ð5Þ

We use the Sutherland law for molecular viscosity l and the equations of state p = qRh, e = cvh for specific
internal energy, and h = e + p/q = cph for specific enthalpy, with gas constant R, specific heat at constant vol-
ume cv, specific heat at constant pressure cp, strain rate tensor Tð~uÞ
Tð~uÞ � Sð~uÞ � 1

3
~r �~uI; with Sð~uÞ ¼ 1

2
ð ~r~uþ ð ~r~uÞTÞ;
effective viscosity le = l + lt and effective thermal conductivity je = j + jt where j = cpl/Pr, jt = cplt/Prt

with laminar and turbulent Prandtl numbers Pr = 0.72 and Prt = 0.85 resp.

2.2. Spalart–Allmaras turbulence model

The Spalart–Allmaras type one-equation turbulence models [13,14] compute the eddy viscosity lt from the
relation lt = qmt with mt ¼ fv1 maxð~m; 0Þ where ~m is the solution of the transport equation
~r � ðq~u~mÞ � ~r � lþ q~m
r

~r~m

� �
� q

cb2

r
ð ~r~mÞ � ð ~r~mÞ ¼ cb1q~S~m� cw1qfw

~m
d

� �2
with d being the distance to the closest wall and near-wall damping function fv1 ¼ v3=ðv3 þ c3
v1Þ with v ¼ ~m=m.

On walls ~m ¼ 0 is prescribed.
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2.3. Wilcox k–x turbulence model

Several k–x model versions (e.g. [15–18]) have evolved from the original proposal [11] where lt = qk/x and
k, x are the solution of
~r � ðq~ukÞ � ~r � ððlþ rkltÞ ~rkÞ ¼ 2ltTð~uÞ : ~r~u� bkqkx;

~r � ðq~uxÞ � ~r � ððlþ rxltÞ ~rxÞ ¼ 2cqTð~uÞ : ~r~u� bxqx2
with constants bk, bx, c, rk and rx. We impose k = 0 on solid walls. The solution for x from asymptotic the-
ory (cf. [11]) is given by x = 6m/(bxy2) and becomes singular at the wall. In industrial RANS solvers, the
boundary condition equation (26) in [15] (abbreviated Menter b.c.) is very popular. Alternatively, Wilcox
[11] suggests to prescribe x at the first grid point above the wall Cd at wall-distance yd located in the viscous
sublayer (Wilcox b.c.):
Menter b:c: : x ¼ Cwxd on Cw; with xd ¼
6m

bxy2
d

; Cw ¼ 10; ð6Þ

Wilcox b:c: : x ¼ xd on Cd; with xd ¼
6m

bxy2
d

: ð7Þ
3. The wall-function concept

3.1. Domain decomposition method with full overlap in the near-wall region

To remedy the no-slip condition (4) instead of solving (1)–(5) in the computational domain X we consider a
modified problem based on a domain-decomposition with full overlap [19]. Denote Xd � X the near-wall
region (Fig. 1 (left)) with artificial inner boundary Cd located within or below the log-layer (Fig. 1 (right)).
Then we divide (1)–(5) into two problems: a global flow problem to be solved in the whole domain X with mod-
ified wall boundary condition (the wall-shear stress is imposed instead of no-slip) and a boundary-layer prob-

lem to be solved in the near-wall region Xd, see also [19,20]. Then the wall-function or hybrid-Re formulation

reads as follows:
We seek a global solution q : X! R, ~u : X! Rd , p : X! R, h : X! R s.t.
~r � ðq~uÞ ¼ 0 in X; ð8Þ
~r � ðq~u�~uÞ � ~r � ð2leTð~uÞÞ þ ~rp ¼ 0 in X; ð9Þ

~r � q~u hþ 1

2
~u �~u

� �� �
� ~r � ½~uð2leTð~uÞÞ� � ~r � ðje

~rhÞ ¼ 0 in X ð10Þ
with the following modified boundary conditions on Cw
~u �~n ¼ 0; ðI�~n�~nÞ2leTð~uÞ~n ¼ �swð~ubl; qbl; hblÞ~ut on Cw ð11Þ
Ω

δΩ

ΓW δΓ

ooU

wall fitted

x

coordinate system

y z yδ δΩ

δΓ

ΓW

Ω

viscous  sublayer

external flow

outer  part  of
boundary  layer

(wake region)

Fig. 1. Domain decomposition with full overlap in the near-wall region.
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ðiÞ je
~rh �~n ¼ 0 on Cw; ð12Þ
or
ðiiÞ je
~rh �~n ¼ � _qwð~ubl; qbl; hblÞ on Cw; ð13Þ
where I�~n�~n is a projection operator onto the tangential space of Cw and
~ut ¼
~vt

j~vtj
; ~vt ¼ ðI�~n�~nÞ~ujCd

with ðI�~n�~nÞij ¼ dij � ninj ð14Þ
with dij = 1 if i = j and zero otherwise (1 6 i, j 6 d). The wall-shear stress sw and the turbulent heat flux _qw are
calculated from
swð~ubl; qbl; hblÞ~ut ¼ �ðI�~n�~nÞ2lbl
e Tð~ublÞ~n on Cw; ð15Þ

_qwð~ubl; qbl; hblÞ ¼ �jbl
e
~rhbl �~n on Cw; ð16Þ
where the boundary layer solution~ubl : Xd ! Rd , qbl : Xd ! R, pbl : Xd ! R, and hbl : Xd ! R is determined by
~r � ðqbl~ublÞ ¼ 0 in Xd; ð17Þ
~r � ðqbl~ubl �~ublÞ � ~r � ð2lbl

e Tð~ublÞÞ þ ~rpbl ¼ 0 in Xd; ð18Þ

~r � qbl~ubl hbl þ 1

2
~ubl �~ubl

� �� �
� ~r � ~ubl 2lbl

e Tð~ublÞ
� �� �

� ~r � jbl
e
~rhbl

� 	
¼ 0 in Xd ð19Þ
with the boundary conditions
~ubl ¼~0 on Cw; ð20Þ
ðiÞ jbl

e
~rhbl �~n ¼ 0 on Cw or ðiiÞ hbl ¼ hw on Cw; ð21Þ

hbl ¼ h; ~ubl ¼~u on Cd: ð22Þ
The boundary layer solution satisfies the original boundary conditions (4), (5) on Cw and is matched with the
global solution on Cd.

A wall-function method is called grid independent (or hybrid or adaptive) if (i) the method is well-defined for
any location of Cd and (ii) the solution of (8)–(22) is independent of the location of Cd (provided Cd resides in
the log-layer or below). In particular, this definition implies grid-independence of surface quantities like pres-
sure coefficient cp and skin-friction coefficient cf.

In practice, the aim is to avoid solving the full compressible RANS plus turbulence model equations (17)–
(22) in the near-wall region and hence standard boundary layer approximations are used.

3.2. Boundary-layer approximation for universal wall functions

Numerical tests show that effects of compressibility in the near-wall region are negligible for Mach numbers
smaller 1.4. Moreover, the near-wall attached flow is already surprisingly well described by the one-dimen-
sional boundary layer equations, except very close to flow separation and reattachment, where a two-dimen-
sional boundary layer model is superior.

Then, instead of (17)–(22) in Xd, for each~xW 2 CW and given ud ¼ k~vtk from the global RANS solution by
(14), seek the wall-parallel component of velocity ubl(y) such that
d

dy
ðmþ mbl

t Þ
dubl

dy

� �
¼ f in f~xW � y~njy 2 ð0; ydÞg; ð23Þ

ublð0Þ ¼ 0; ublðydÞ ¼ ud � k~vtk; ð24Þ
where f = 0 or f = 1/q dp/dx assumed to be independent of y and given from the global RANS solution at Cd.
Therein, denote yd ¼ distð~xW ;CdÞ. The variant f = 0 is called equilibrium stress balance model leading to uni-
versal near-wall solutions.
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It is well known that for equilibrium boundary layers, e.g., the flow over a flat plate at zero pressure gra-
dient, in the region between the wall and the outer edge of the logarithmic layer, the profiles for mean flow u

and turbulence quantities k, x, ~m and hence mt are universal, i.e., they collapse when scaled with friction veloc-
ity us and viscosity m = l/q
uþ ¼ u
us
; yþ ¼ yus

m
; mþt ¼

mt

m
; pþ ¼ m

qu3
s

dp
dx
; kþ ¼ k

u2
s

; xþ ¼ xm
u2

s

: ð25Þ
These universal near-wall profiles may be obtained by integration of (23) with f = 0 and the corresponding 1D
boundary-layer equations for k and x resp. ~m.

Eq. (23) in plus-units reveals that it is the pressure gradient parameter p+ which controls the validity of the
equilibrium stress balance assumption
1þ mþt
� � duþ

dyþ
¼ 1þ pþyþ in ð0; yþd Þ: ð26Þ
4. Validation of the boundary layer approximation for aerodynamic flows

In this section, we investigate the near-wall behaviour of the SA-E and SST k–x model in the following two
important flow situations of aerodynamic flows, viz., in an adverse pressure gradient boundary layer flow (typ-
ically on the upper side of an airfoil) and close to the stagnation point (at the leading edge of wing or fuselage).

4.1. Validation for adverse pressure gradient flow

In this section, we assess the range of validity of the boundary layer approximation (23) with f = 0 for two
adverse pressure gradient (APG) flows. Firstly, we consider the flow over a flat plate at Re = 4.1 · 107 devised
by [8]. We use a flat plate of length L = 8 m with farfield data u1 = 78 m s�1 and m1 = 1.5 · 10�5 m2 s�1 At
distance y = 0.5 m above the wall, suction and blowing is imposed by prescribing the wall-normal velocity
component v(x) = Aexp(�b(x � xa)2) � Aexp(�b(x � xb)2) with xa = 2.5, xb = 5.5, A = 0.35x, b = 108/62

which produces a streamwise pressure gradient leading to separation. Secondly, we study the flow around
the ‘‘A-airfoil’’ (AS239) in highlift configuration for Ma = 0.15 at three different Re = 2.0 · 106, 1.0 · 107,
4.0 · 107, and different angle of attack a = 10.2�, 13,3�, 14,2�, 15.3�. We investigate the near-wall behaviour
of the SA-E model and the SST k–x model.

First we recall that for fixed APG, say fixed a = 13.3�, p+ is decreasing for increasing Re due to its defini-
tion, see Fig. 2 (left). As the separation point is approached, p+ goes to infinity. Regarding the test cases under
investigation, for the SA-E model, the region where (26) has universal (i.e., Re-number independent) solutions
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Fig. 2. Reynolds number dependence of p+ (left) and universal p+-dependent near-wall behaviour (right) for SA-E model.
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depending only on the parameter p+, is relatively large, see Fig. 2 (right). Therein, the A-airfoil for a = 13.3�,
Re = 2 · 106 and the zero-pressure gradient flat plate solution (ZPG) are also shown.

Interestingly, SA-E and SST k–x model show a different behaviour in APG flow. We focus on the flat plate
APG flow, which has a p+ behaviour close before separation similar to the A-airfoil at Re = 4 · 107. We con-
sider the velocity profiles u+(y+) at different p+-stations. The SST k–x model shows a general breakdown of
the universal ZPG solution, i.e., the character of the velocity profile changes over the entire buffer layer
(5 < y+ < 50) and log-layer (y+ > 50), see Fig. 3. However, in the viscous sublayer (y+ < 5) agreement with
the universal ZPG solution is still very close, except at large p+-values very close before separation.

On the other hand, the SA-E model shows a successive breakdown of the universal ZPG solution, i.e., the
region occupied by the universal ZPG solution in reduced progressively, see Fig. 4 (left).

Now we consider the turbulence quantities. For the SA-E model, ~mþ shows a much larger deviation from
the universal ZPG solution than would be expected from the behaviour of the u+-profiles, see Fig. 4 (right).

Fig. 5 shows the profiles for k+ and x+. For x a progressive reduction of the region of validity of the uni-
versal ZPG solution is observed. For k, a general breakdown of the ZPG solution in the entire near-wall region
can be seen. This causes the general breakdown of the universal ZPG solution for u+.

Finally, we study the profiles for eddy-viscosity. The deviation from the universal ZPG solution is large in
the entire near wall region even for small p+ and increasing rapidly with increasing p+, see Fig. 6.
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Fig. 3. Near-wall velocity profile for SST k–x model at different p+-stations for APG flow [8].
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Fig. 4. u+ and ~mþ for SA-E model at different p+-stations for the APG flow [8].
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Fig. 5. Profiles for k+ and x+ at different p+-stations for APG flow [8].
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Fig. 6. Eddy viscosity for SA-E model (left) and SST k–x model (right) for APG flow [8].
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4.2. Near-wall behaviour of RANS solutions close to an airfoil leading edge

In this subsection, we study the near-wall behaviour of the SA-E and SST k–x model close to the leading
edge of the ‘‘A-airfoil’’ at Ma = 0.15, Re = 2.0 · 106, and angle of attack a = 13.3�. This flow is far from being
fully turbulent due to the close distance to the stagnation point at x/c = 0.03 (with chord length c). Moreover,
the flow is affected by the strong variation of p+ together with the large mean-streamline curvature. Fig. 7
shows the p+-distribution for two airfoil flows. Note that p+ is positive for adverse pressure gradients and neg-
ative for favourable pressure gradients. Due to its definition, p+ goes to infinity as the stagnation and sepa-
ration points are approached.

We consider the solution at six stations xi = nic with n1 = 0.15, n2 = 0.2, n3 = 0.25 on the lower side char-
acterized by strong flow acceleration and n4 = 0.0003, n5 = 0.0019, n6 = 0.0044 on the upper side, with corre-
sponding p+-values of order 10�2. Regarding the velocity profiles, Fig. 8 shows that for y+

~ 10, the
agreement with the universal ZPG solution is very good for both SA-E and SST model. However, for the
SA-E model, for increasing values of y+, deviations from the ZPG solution become large.

The turbulence quantities are shown in Fig. 9. The profiles for x are close to the universal ZPG-solution for
y+

~ 30. However, it is noteworthy that the near-wall solution for ~m is far from its universal ZPG-profile.



x/c

p+

0 0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0

0.1

0.2

0.3 p+ = v/(rho ut
3) * dp/dx

p+ = 0

x/c

p+

0 0.25 0.5 0.75
-0.2

-0.1

0

0.1

0.2

0.3 p+ = v/(rho ut
3) * dp/dx

p+ = 0

Fig. 7. Pressure gradient p+ for RAE-2822 case 10 (left) and A-airfoil (right).

y+

u+

100 101 102

5

10

15

20

25

30

RANS station 1
RANS station 2
RANS station 3
RANS station 4
RANS station 5
RANS station 6
RANS ZPG

y+

u+

100 101 102

2

4

6

8

10

12

14

16

18

RANS station 1
RANS station 2
RANS station 3
RANS station 4
RANS station 5
RANS station 6
RANS ZPG

Fig. 8. Profiles of u+ around the leading edge of A-airfoil for SA-E (left) and SST k–x (right).

y+

w
+

50 150
10-2

10-1

100

101

RANS station 1
RANS station 2
RANS station 3
RANS station 4
RANS station 5
RANS station 6
RANS ZPG

y+

v S
A+

0 10 20 30
0

1

2

3

4

5

RANS station 1
RANS station 2
RANS station 3
RANS station 4
RANS station 5
RANS station 6
RANS ZPG

Fig. 9. Profile for x for SST model and ~m for SA-E model at leading edge of A-airfoil.

T. Knopp et al. / Journal of Computational Physics 220 (2006) 19–40 27



28 T. Knopp et al. / Journal of Computational Physics 220 (2006) 19–40
4.3. Implications for wall-functions and motivation for near-wall grid adaptation

In this subsection, we draw some implications for a suitable usage of universal wall-functions for non-equi-
librium flows. In this paper, we are interested in flows with (i) stagnation points and subsequent not yet fully
developed turbulent flow, (ii) regions of adverse pressure gradient with relatively large pressure gradient
parameter, and (iii) regions of separation and reattachment.

The universal ZPG wall-functions for u and x are still close to the RANS solution in the viscous sublayer
even in regions (i) and (ii) provided p+ is of at most moderate size. Moreover, it was shown in [8, p. 285], that
in regions of separated flow and after reattachment the universal profiles are still close to the wall-resolved
RANS solution in the viscous sublayer.

From Fig. 8 we infer that close to stagnation points, large first spacings y+(1) should be avoided, in par-
ticular for the SA model.

From Figs. 4–6 and 9 we see that the near-wall RANS solutions for k, ~m and hence mt show large deviations
from their universal ZPG profiles in situations (i) and (ii). Thus we may conclude that off-wall boundary con-
ditions using the universal ZPG profile for k and ~m are sources of grid-dependent solutions and should be
avoided. Instead homogeneous Dirichlet conditions are recommended, see Section 7.

As suggested by Figs. 6 and 9 (right) we do not invoke mþt ¼ dyþ=duþ � 1, which is relation (26) with
neglecting the p+-term, as a consistency relation between u+ and mþt , because this may be an extra source of
grid-dependence in non-equilibrium situations. The profiles of mþt change much larger than would be expected
from the u+-profiles, which is due to neglecting the p+-term. Note that this is also supported by an a posteriori
analysis. For this purpose, we integrated (26) numerically at different p+ stations where the corresponding pro-
file for mþt is taken from a spline interpolation of the RANS solution. Integration is performed with and with-
out the p+-term. Good agreement is found when the p+-term is taken into account but poor otherwise.

Finally, we study the issue of large p+-values close before separation. For large Re ’ 107, p+ is small even
close before separation and universal ZPG wall functions give almost grid independent results, as shown in [8,
p. 284]. But for moderate Re-numbers, say Re = 2 · 106 this term becomes important. With regard to the
application of wall-functions, the fact that us! 0 as separation is approached has two counteracting effects:
The unfavourable effect is that close before separation p+ becomes large such that the universal ZPG profiles
for u and x cease to be valid outside the viscous sublayer. The favourable point is that the thickness of the
viscous sublayer in dimensional units is becoming larger, i.e., points at a given wall-distance located in the
log-layer upstream of the separation point now may reside in the viscous sublayer.

The latter effect is illustrated in Fig. 10 (left). Therein, we consider two wall-parallel grid-lines and study
their y+ distribution on the upper side of the A-airfoil at a = 13.3�. The grid-points initially reside in the
log-layer. As the separation point is approached, their y+-values move toward the viscous sublayer.
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This effect can be enforced by applying a wall-normal grid adaptation which shifts the nodes closer to the
wall, see Fig. 10 (right). Moreover, using such a grid adaptation, suitable values of y+(1) can be ensured also in
flow regions (i) and (iii). This will be described in detail in Section 6.

5. Turbulence model consistent universal wall functions

In boundary layer flows at ZPG, the condition on turbulence model consistency mbl
t ¼ mt implies that model

specific wall-functions are required. As the near-wall profiles of different versions of the Spalart–Allmaras
model resp. the k–x model almost collaps [21], it is sufficient to specify one model-consistent universal
wall-function for the Spalart–Allmaras model, denoted FSA, and one for the k–x model, referred to as Fkx.
F SA ¼ ð1� /SAÞF Sp;5 þ /SAF Rei;m; /SA ¼ tanhðarg3Þ; arg ¼ yþ=24; ð27Þ
F kx ¼ ð1� /kxÞF Sp;3 þ /kxF Rei;m; /kx ¼ tanhðarg2Þ; arg ¼ yþ=50; ð28Þ
which are plotted in Fig. 11. Therein, we use Reichardt’s law of the wall
uþ ¼ F ReiðyþÞ; F ReiðyþÞ �
lnð1þ 0:4yþÞ

j
þ 7:8 1� e�

yþ
11:0 � yþ

11:0
e�

yþ
3:0

� �
ð29Þ
with j = 0.41. We apply the following blending with the classical log-law Flog = ln(y+)/j + 5.1, viz.,
F Rei;m ¼ ð1� /b1ÞF Rei þ /b1F log; /b1 ¼ tanhðarg4Þ; arg ¼ yþ=27: ð30Þ

Spaldings law [22] with parameter N 2 {3,4,5} is given by the inverse formula
yþ ¼ F �1
Sp;N ðuþÞ; F �1

Sp;N ðuþÞ � uþ þ e�j5:2 ejuþ �
XN

n¼0

ðjuþÞn

n!

 !
: ð31Þ
Of crucial importance is the near-wall solution for x. Instead of the standard blending [7], a new proposal
avoids the deviation of x from its low-Re solution in the buffer layer, viz.,
Standard blending : x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

vis þ x2
log

q
; ð32Þ

New proposal : x ¼ /xb1 þ ð1� /Þxb2; / ¼ tanhðarg4Þ; arg ¼ yþ

10
ð33Þ
with the following blending formula and the asymptotic relations
xb1 ¼ xvis þ xlog; xb2 ¼ x1:2
vis þ x1:2

log

� 	1=1:2

; xvis ¼
6m

bxy2
; xlog ¼

usffiffiffiffiffi
bk

p
jy
: ð34Þ
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Fig. 11. New wall-functions for SA- resp. k–x type models (left), wall law for x (right).
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In [8] a cubic spline interpolation of the near-wall RANS solution instead of closed formula is used. How-
ever, the aim of the present approach is to also allow for an easy dissemination of the method to other CFD
codes.

5.1. Iterative solution strategy

Suppose a solution of (23) with f = 0 is known in either of the two closed forms
uþ ¼ F ðyþÞ () u
us
¼ F

yus

m

� 	
or yþ ¼ F �1ðuþÞ () yus

m
¼ F �1 u

us

� �
ð35Þ
then the matching condition ubl = ud on Cd and the relation ubl = usF(yus/m) imply
F
ydus

m

� 	
¼ ud

us
resp: F �1 ud

us

� �
¼ ydus

m
ð36Þ
which can be solved for us using Newton’s method.

Remark 1. Newton’s method for the direct form u+ = F(y+) requires about three to four iteration steps
independent of y+. For the inverse formula y+ = F�1(u+) convergence problems can be observed for
y+(1) ’ 300 since Newton’s method for the inverse formula is ill-conditioned. Thus the direct formulation
should be used for large y+-values.

Denote TM 2 {SA, kx} and N 2 {3,5}. For the numerical solution of
ud

us
¼ F TM

ydus

m

� 	
; F TM ¼ ð1� /TMÞF Sp;N þ /TMF Rei;m
we proceed as follows:

(1) From the initial guess u0
s ¼ ud=yd, seek us,Rei as solution of ud/us = FRei,m(ydus/m).

(2) Using the initial guess u0
s ¼ us;Rei, seek us,Sp as solution of ydus=m ¼ F �1

Sp;Nðud=usÞ.
(3) Compute /TM and set us = (1 � /TM)us,Sp + /TMus,Rei.

In our experience, steps (1) and (2) require each three to four iteration steps for convergence. The global
hybrid-Re problem (8)–(16) with the wall function model (36) is solved iteratively until convergence is reached.
Given an initial global flow solution, we can compute sw ¼ qu2

s from (36). This provides the boundary condi-
tion on Cw, and the new global flow solution can be computed.

6. Wall-normal grid adaptation

We may conclude from Section 4 that in the following flow situations the deviation of the universal ZPG
solution from the low-Re RANS solution is becoming large as y+ is increased: (a) stagnation points with sub-
sequent not fully developed flow, (b) strong pressure gradients (p+

’ 0.05), and (c) regions of separated flow.
We point out that even if the pressure gradient parameter would be taken into the wall-function method such
that grid independent results for pressure induced separation could be obtained, the problems near the leading
edge and in regions of separated and reattached flow would still limit application to complex aerodynamic
flows. Grid-adaptation is a solution strategy for all situations (a)–(c).

Thus, as a remedy, a near-wall grid adaptation [23] is employed. We assume that inside the prismatic layer,
the nodes are located on rays starting at the corresponding wall node. We use the following notation, see
Fig. 12 (left):

	 ~xwp: surface (wall) node,
	 ~xnp: first node above the wall corresponding to node wp,
	 f~xwp þ kp~rg: ray of points starting at wall node ~xwp and ending at the tetrahedral layer;
f~xwp þ kp~rg � f~x 2 Rd j~x ¼~xwp þ kp~r; 0 6 p 6 pmaxg, where the direction vector~r may be non-constant.
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Moreover, we assume that~xnp �~xwp is almost parallel to the surface normal vector ~n. Then the algorithm
for y+-adaptation may be written as follows:

(1) Read RANS solution and grid.
(2) y+ grid adaptation.

(a) For each surface node~xwp do:
(i) Determine~xnp.

(ii) Calculate us using (29). From the wall-distance ynp ¼ j~xnp �~xwpj determine the wall-distance in
plus units yþnp.

(iii) Check if~xwp is located in a region of flow stagnation and strong surface curvature.
(iv) Determine p+ from (25) and check if jpþj > pþ0 for a given threshold pþ0 .
(v) Check if point~xwp resides in a separation region.

(vi) Based on (2a.iii)–(2a.v) set target value yþtarget.
(vii) If yþtarget < yþnp then set ynew ¼ ynpyþtarget=yþnp, else ynew = ynp.

(b) Smooth the ynew-distribution.
(c) For each surface node redistribute the points on its ray f~xwp þ kp~rg where the last point~xwp þ kp;max~r

remains unchanged.
(3) Interpolate RANS solution from old grid to new grid.

Some technical details are described in the following. Calculating us using (29) is sufficient for the adapta-
tion. We use the threshold value pþ0 ¼ 0:09 for indicating regions of strong pressure gradient. Concerning the
target value for y+, numerical tests suggest yþtarget 2 ½5; 10� in regions of flow stagnation and strong surface cur-
vature and yþtarget 2 ½1; 5� in regions of separation.

Smoothing of the ynew-distribution is performed as follows. Denote K the number of smoothing steps,
yi

np ¼ ynew of node ~xi
np after (2a.vii), NðiÞ the set of indices of neighbour (adjacent) surface nodes of node i

and #NðiÞ their number. Then in smoothing step k
yi;k
np ¼ ð1� �Þyi;k�1

np þ �ynei;k�1
np with ynei;k�1

np ¼ 1

#NðiÞ
X

j2NðiÞ
yj;k�1

np :
The wall-normal grid adaptation can also be used to increase y+(1) in regions of attached boundary layer flow
close to equilibrium, where p+ is small and almost constant. A typical area of application is the fuselage of an
airfoil. This can be used to accelerate the convergence of the flow solver.

7. Discretization using an explicit finite volume method

Computations are performed using the DLR TAU-code, which is of cell-vertex type, i.e., of cell-centered
type w.r.t. the dual grid cells. The convective fluxes are calculated by a central scheme with artificial scalar
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dissipation [24]. The gradients of the flow variables are reconstructed using a Green–Gauss–MUSCL formula.
The arising fixed-point problem is iterated in fictitious pseudo-time using a low-storage k-stage Runge–Kutta
scheme by Jameson [25].

In the present method, boundary cells are half cells in the sense that the corresponding grid nodes are
located on the boundary. This allows to impose homogeneous Dirichlet boundary conditions for k and ~m. Con-
cerning the hybrid wall-function boundary condition, the standard approach for cell-centered type FVM to
simply modify lt in the boundary cell (see [22] Eqs. (9a) and (10a)) cannot be used. Therefore, the fluxes across
the wall are prescribed using (11), (13) with the approximative relation
T �~n ¼ ðI�~n�~nÞT �~nþ~n�~nT �~n � �sw~ut;
where the normal contribution of the wall-shear stress is neglected.
The global hybrid-Re problem (8)–(16) with the wall function model (36) is solved iteratively in pseudo time

until convergence is reached.

8. Numerical results

8.1. Flat plate turbulent boundary layer with zero pressure gradient

The ability of the wall function proposal described in Section 5 to give solutions almost independent of the
wall-normal grid spacing in zero-pressure gradient flows is demonstrated. We consider the turbulent boundary
layer flow at zero pressure gradient over a flat plate of length l = 5 m studied experimentally by Wieghardt and
recorded in [26] as Flow 1400. In agreement with the experimental setup we use u1 = 33 m/s, m = 1.51 ·
10�5 m2/s and an adiabatic wall. Transition from laminar to turbulent flow is prescribed in agreement with
the formula for the critical Reynolds number where transition occurs (cf. [27, p. 471]).

The grid-dependence using the classical wall laws (31) and (29) is shown in Fig. 13 (left) by plotting the
relative error in skin friction cf ¼ sw=ð0:5q1u2

1Þ in the interval 2 6 x 6 4.5 between the low-Re solution
cl:R:

f and the solution with wall-functions cw:f :
f for the SA–Edwards model, where y+(1) denotes the wall dis-

tance of the first node above the wall in viscous units.
Figs. 13 (right) and 14 show the almost grid independent results for the new wall functions. In order to

obtain grid independent results for k–x type models, it is crucial to use (7) and (33) for the x boundary
condition.

As a final remark, method (28), (7), (33) gives almost grid-independent predictions for all versions of the
k–x model considered, including non-linear variants and explicit algebraic Reynolds-stress models, see
Fig. 15. The variation in cf due to a variation in y+(1) is significantly smaller than the different predictions
among the various k–x model versions.
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8.2. Transonic airfoil flows RAE-2822 cases 9 and 10

In this section, we apply the method to the transonic airfoil flows RAE-2822 case 9 (no/small separation
region at Ma = 0.73, Re = 6.5 · 106 and angle of attack a = 2.8�) and case 10 (shock induced separation at
Ma = 0.75, Re = 6.2 · 106 and a = 2.8�) investigated experimentally in [28]. We consider a series of hybrid-
Re grids of O-type with y+(1) varying from 1 to 60, generated using the commercial grid generation tool Cen-
taurSoft (www.centaursoft.com). Fig. 16 shows the y+(1)-distribution for the SST k–x model. The grids are
built such that the thickness of the prismatic layer has an almost constant value around 0.052c (with chord
length c) which fully contains the boundary layer. It is worthwhile pointing out that the generation of grids
with y+(1) ’ 8 is much simpler than for low-Re grids.

We consider the predictions for the pressure coefficient cp and the local skin friction coefficient cðlocÞ
f (based

on the local dynamic pressure at the boundary layer edge qP, [28]). Preliminary calculations show that pre-
scribing transition at x/c = 0.03 according to the experiment or treating the wall as fully turbulent has only
a small influence which is restricted to the region x/c 6 0.05.

8.2.1. Transonic airfoil flow RAE-2822 case 10

The results for the SA-E model are given in Figs. 17 and 18. The agreement in cp on the various grids is very
good. On the coarser grids with y+(1) ’ 40, around the leading edge the deviation is small in cp but discernible
in cf. On the upper side in the fully turbulent region before the shock (x/c ~ 0.5), the behaviour in cf is
similar to the flow over a flat plate: The predictions for y+(1) = 1 and y+(1) ’ 20 almost collapse whereas

http://www.centaursoft.com


x/c

y+
(1

)

0 0.25 0.5 0.75 1

2

4

6

8

10

12

14 low-Re
y+(1) = 1
y+(1) = 4
y+(1) = 7
y+(1) = 10

x/c

y+
(1

)

0 0.25 0.5 0.75 1
0

20

40

60

80

low-Re
y+(1) = 1
y+(1) = 20
y+(1) = 40
y+(1) = 60

Fig. 16. RAE case 10: Distribution of y+(1) for SST k–x model [15].

x/c

c f

0 0.25 0.5 0.75 1

0

0.002

0.004

0.006 exp.
low-Re
y+(1) = 1
y+(1) = 4
y+(1) = 7
y+(1) = 10
cf = 0

x/c

c f

0 0.25 0.5 0.75 1

0

0.002

0.004

0.006 exp.
low-Re
y+(1) = 1
y+(1) = 20
y+(1) = 40
y+(1) = 60
cf = 0

Fig. 18. RAE case 10: Distribution of cf for the SA-E model.

x/c

c p

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

exp.
low-Re
y+(1) = 1
y+(1) = 4
y+(1) = 7
y+(1) = 10

x/c

c p

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

exp.
low-Re
y+(1) = 1
y+(1) = 20
y+(1) = 40
y+(1) = 60

Fig. 17. RAE case 10: Distribution of cp for the SA-E model.

34 T. Knopp et al. / Journal of Computational Physics 220 (2006) 19–40
in the intermediate region of y+(1) the deviation is slightly larger. In the separation region, the agreement on
intermediate-Re grids with y+(1) ~ 10 is surprisingly good, whereas on the coarser grids y+(1) ’ 20 the dif-
ferences become larger.

The results for the SST k–x model are plotted in Figs. 19 and 20. We mention that (7) is superior to (6) in
giving grid-independent results for high-Re grids y+(1) ’ 40, whereas for y+(1) ~ 10 both boundary condi-
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tions are almost equal. The deviations around the leading edge are similar to the SA-E model. In the fully
turbulent region on the upper side before the shock, there are moderate deviations in cf on the intermedi-
ate-Re and high-Re grids.

8.2.2. Transonic airfoil flow RAE-2822 case 9

For case 9, the SA-E model predicts a slight shock-induced separation for the low-Re b.c. and for
y+(1) ~ 20 (with hybrid-Re b.c.), whereas for y+(1) ’ 40 no shock-induced separation is predicted, see
Fig. 21. In all cases, the flow remains attached near the trailing edge. It should be noted that on a similar
low-Re grid of H-type, after reattachment a slight trailing edge separation is predicted. This stresses the influ-
ence of the grid topology on the results.

Regarding the SST k–x model, on all grids except for y+(1) = 60 a slight shock induced separation is pre-
dicted in agreement with the low-Re result, see Fig. 22. In all cases the flow remains attached near the trailing
edge.

8.3. Subsonic A-airfoil in highlift configuration

In this section, we apply the wall-function method to the subsonic flow around the ‘‘A-airfoil’’ (AS239) in
highlift configuration at Ma = 0.15, Re = 2.0 · 106, and angle of attack a = 13.3�, studied experimentally in
[29,30]. The strong adverse pressure gradient on the upper side causes the turbulent boundary layer to separate
close to the trailing edge. In the experiment, transition was prescribed at x/c = 0.3 on the lower side and free
transition was observed at x/c = 0.12 on the upper side.
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Fig. 21. RAE case 9: Distribution of cf for the SA-E model.
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However, in the present computations the airfoil surface is treated fully turbulent. The laminar boundary
layer region is relatively large for the A-airfoil in the experiment and the present wall-function model relies on
a fully-turbulent boundary-layer relation for the wall-shear stress. As the focus is on grid-independence of the
wall-function method, the question of laminar-turbulent transition modelling is not considered here. Note that
neglecting transition increases the deviation from the experimental data significantly.
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Fig. 23. A-airfoil: Distribution of y+(1) for the SST k–x model.
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Fig. 24. A-airfoil: Prediction for cp (left) and cf (right) for SA-E model.
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Fig. 25. A-airfoil: Prediction for cf for SST k–x model with Wilcox b.c. (7).
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The O-type grids with their y+(1)-distribution are shown in Fig. 23, where the denoting value has to be seen
as an average over the chord length. This test case is very interesting and challenging for wall-functions, as
y+(1) ceases from its maximal value near the leading edge to zero at the separation point.

The results for the SA-E model on the grids with y+(1) 6 10 are shown in Fig. 24 and show close agreement
with the low-Re solution. The two solutions with y+(1) = 40 and y+(1) = 80 suffer from local oscillations in cp

near the leading edge and are not shown here. This can be remedied by ensuring smaller values for y+(1) near
the leading edge (e.g., by using a grid adaptation) or by using a modified boundary condition for ~m. Regarding
the latter, we can prescribe ~m ¼ ~mcs on Cd, where ~mcs is the spline interpolation of the universal near-wall solu-
tion for ~m [8], but then results become inferior on intermediate-Re grids, see [21].

For the SST k–x model with Wilcox b.c. (7) (see Fig. 25), on all grids the agreement in cf with the low-Re
solution is remarkably good, in particular for y+(1) ~ 10. We remark that the results for the SST k–x model
with boundary condition (6) show a discernible underprediction for cf on the high-Re grids, see [21].

9. Combination of wall-normal grid adaptation and wall-functions

In this section, we apply the grid-adaptation technique described in Section 6 to the two test cases consid-
ered in the previous section. For the A-airfoil we use � = 0.6 and K = 200. Fig. 12 (right) shows the y+-distri-
bution on the adapted grids. Fig. 26 shows that the grid-independence of the cf-distribution is improved
noticeably.
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Fig. 26. A-airfoil: cf after y+-adaptation for SAE (left) and SST k–x (right).
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For the SA-E model, near-wall grid adaptation around the leading edge is necessary for ensuring stability
of the method on the high-Re grids, as for large y+-values the velocity profiles are too far from the universal
ZPG solution, recall Fig. 8. Further tests show that limiting y+(1), e.g., y+(1) ~ 50 around the leading edge is
sufficient to ensure stability, i.e., to avoid oscillations. This can be the method of choice if large y+(1)-values
are desired in order to obtain a large convergence acceleration.

Table 1 gives the separation point without and with y+-adaptation. Therein Ny denotes the number of wall
normal nodes in the prismatic layer. Values denoted by ( )* indicate that the solution suffers from strong oscil-
lations near the leading edge.
Table 1
Prediction of separation point for A-airfoil without and with y+(1) adaptation

y+(1) (average) Ny xsep/c SA-E xsep/c SA-E (y+-adap) xsep/c SST k–x xsep/c SST k–x (y+-adap)

Low-Re 33 0.771 – 0.866 –
1 33 0.770 – 0.866 –
4 28 0.755 – 0.863 –
7 26 0.759 – 0.868 –

10 24 0.761 – 0.861 –
20 21 0.787 0.776 0.861 0.864
40 19 (0.838)* 0.771 0.881 0.873
80 17 (0.881)* 0.788 0.903 0.867

Values denoted by ( )* suffer from local oscillations at the leading edge.
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Fig. 27. RAE case 10 on adapted grid: y+(1) (left) and detail of cp for SST k–x (right).
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Fig. 28. RAE case 10 on adapted grid for SA-E (left) and SST k–x (right).
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The SST k–x model predicts a too late separation point on the high-Re meshes without near-wall adapta-
tion. This stems from the influence of significant p+-values on the near-wall velocity profile over a relatively
large streamwise distance due to the moderate Reynolds-number, recall Figs. 3 and 10.

Finally, it is worthwhile pointing out that the grid-dependence is much smaller than the spreading due to
the uncertainty associated with the turbulence model.

Secondly, we apply the approach to the RAE 2822 case 10. Here we are interested in a better resolution of
the leading edge and the aft-shock separation region. Both regions are critical to obtain correct moments e.g.
for aeroelastic applications. Fig. 27 (left) shows that the wall-normal grid is shifted towards the low-Re regime
in the vicinity of the leading edge, close to the shock and in the separation region. The improvement of grid-
independence in cp (Fig. 27 (right)) and in cf in the separation region (Fig. 28) is discernible. In particular, the
prediction for the reattachment point is almost grid-independent.

10. Conclusions

A new grid and flow adaptive wall-function strategy has been presented. This strategy consists of two parts,
namely, a hybrid wall-function proposal suitable for non-equilibrium flows and a near-wall grid adaptation
method with a flow-based sensor.

Based on an investigation of the near-wall behaviour of the SA-E and the SST k–x model in non-equilib-
rium flow situations, improvements of the wall-function method for applications to aerodynamic flows are
suggested, most notably to avoid off-wall boundary conditions for turbulent kinetic energy and eddy viscosity
using their universal equilibrium solutions.

A new combination of wall-functions and near-wall grid adaptation ensures both an appropriate resolution
of near-wall flow physics and takes into account the range of validity and stability of the wall-function model.

The treatment of laminar flow regions and the question of transition from laminar to turbulent flow is sub-
ject of future research. Moreover, future work will focus on applications to unsteady flow problems. It is also
intended to apply this method as a new near-wall model for large-eddy simulation and to a new class of so-
called scale adaptive models [31], which are in between standard unsteady RANS and detached-eddy simula-
tion. These methods require three-dimensional unsteady calculations using a very small time step and the aim
is to make these methods amenable to complex configurations at affordable costs.
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